Lesson No. 13

Subroutines
Program Flow

Till now we have accumulated the very basic tools of assembly language programming. A very important weapon in our arsenal is the conditional jump instruction. During the course of last two chapters we used these tools to write two very useful algorithms of sorting and multiplication. The multiplication algorithm is useful even though there is a MUL instruction in the 8088 instruction set, which can multiply 8bit and 16bit operands. This is because of the extensibility of our algorithm, as it is not limited to 16bits and can do 32bit or 64bit multiplication with minor changes.

Both of these algorithms will be used a number of times in any program of a reasonable size and complexity. An application does not only need to multiply at a single point in code; it multiplies at a number of places. If multiplication or sorting is needed at 100 places in code, copying it 100 times is a totally infeasible solution. Maintaining such a code is an impossible task.

The straightforward solution to this problem using the concepts we have acquainted till now is to write the code at one place with a label, and whenever we need to sort we jump to this label. But there is problem with this logic, and the problem is that after sorting is complete how the processor will know where to go back. The immediate answer is to jump back to a label following the jump to bubble sort. But we have jumped to bubble sort from 100 places in code. Which of the 100 positions in code should we jump back? Jump back at the first invocation, but jump has a single fixed target. How will the second invocation work? The second jump to bubble sort will never have control back at the next line.

Instruction are tied to one another forming an execution thread, just like a knitted thread where pieces of cotton of different sizes are twisted together to form a thread. This thread of execution is our program. The jump instruction breaks this thread permanently, making a permanent diversion, like a turn on a highway. The conditional jump selects one of the two possible directions, like right or left turn on a road. So there is no concept of returning.

However there are roundabouts on roads as well that take us back from where we started after having traveled on the boundary of the round. This is the concept of a temporary diversion. Two or more permanent diversions can take us back from where we started, just like two or more road turns can take us back to the starting point, but they are still permanent diversions in their nature.

We need some way to implement the concept of temporary diversion in assembly language. We want to create a roundabout of bubble sort, another roundabout of our multiplication algorithm, so that we can enter into the roundabout whenever we need it and return back to wherever we left from after completing the round.

[image: image1]
Key point in the above discussion is returning to where we left from, like a loop in a knitted thread. Diversion should be temporary and not permanent. The code of bubble sort written at one place, multiply at another, and we temporarily divert to that place, thus avoiding a repetition of code at a 100 places.

CALL and RET

In every processor, instructions are available to divert temporarily and to divert permanently. The instructions for permanent diversion in 8088 are the jump instructions, while the instruction for temporary diversion is the CALL instruction. The word call must be familiar to the readers from subroutine call in higher level languages. The CALL instruction allows temporary diversion and therefore reusability of code. Now we can place the code for bubble sort at one place and reuse it again and again. This was not possible with permanent diversion. Actually the 8088 permanent diversion mechanism can be tricked to achieve temporary diversion. However it is not possible without getting into a lot of trouble. The key idea in doing it this way is to use the jump instruction form that takes a register as argument. Therefore this is not impossible but this is not the way it is done.

The natural way to do this is to use the CALL instruction followed by a label, just like JMP is followed by a label. Execution will divert to the code following the label. Till now the operation has been similar to the JMP instruction. When the subroutine completes we need to return. The RET instruction is used for this purpose. The word return holds in its meaning that we are to return from where we came and need no explicit destination. Therefore RET takes no arguments and transfers control back to the instruction following the CALL that took us in this subroutine. The actual technical process that informs RET where to return will be discussed later after we have discussed the system stack.

CALL takes a label as argument and execution starts from that label, until the RET instruction is encountered and it takes execution back to the instruction following the CALL. Both the instructions are commonly used as a pair, however technically they are independent in their operation. The RET works regardless of the CALL and the CALL works regardless of the RET. If you CALL a subroutine it will not complain if there is no RET present and similarly if you RET without being called it won’t complain. It is a logical pair and is used as a pair in every decent code. However sometimes we play tricks with the processor and we use CALL or RET alone. This will become clear when we need to play such tricks in later chapters.

Parameters

We intend to write the bubble sort code at one place and CALL it whenever needed. An immediately visible problem is that whenever we call this subroutine it will sort the same array in the same order. However in a real application we will need to sort various arrays of various sizes. We might sometimes need an ascending sort and descending at other times. Similarly our data may be signed or unsigned. Such pieces of information that may change from invocation to invocation and should be passed from the caller to the subroutine are called parameters.

There must be some way of passing these parameters to the subroutine. Revising the subroutine temporary flow breakage mechanism, the most straightforward way is to use registers. The CALL mechanism breaks the thread of execution and does not change registers, except IP which must change for processor to start executing at another place, and SP whose change will be discussed in detail later. Any of the other registers can hold parameters for the subroutine.

1.1. Our First Subroutine

Now we want to modify the bubble sort code so that it works as a subroutine. We place a label at the start of bubble sort code, which works as the anchor point and will be used in the CALL instruction to call the subroutine. We also place a RET at the end of the algorithm to return from where we called the subroutine.

	
	Example 5.1

	01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37
	; bubble sort algorithm as a subroutine

[org 0x0100]

 jmp start

data: dw 60, 55, 45, 50, 40, 35, 25, 30, 10, 0

swap: db 0

bubblesort: dec cx ; last element not compared

 shl cx, 1 ; turn into byte count

mainloop: mov si, 0 ; initialize array index to zero

 mov byte [swap], 0 ; reset swap flag to no swaps

innerloop: mov ax, [bx+si] ; load number in ax

 cmp ax, [bx+si+2] ; compare with next number

 jbe noswap ; no swap if already in order

 mov dx, [bx+si+2] ; load second element in dx

 mov [bx+si], dx ; store first number in second

 mov [bx+si+2], ax ; store second number in first

 mov byte [swap], 1 ; flag that a swap has been done

noswap: add si, 2 ; advance si to next index

 cmp si, cx ; are we at last index

 jne innerloop ; if not compare next two

 cmp byte [swap], 1 ; check if a swap has been done

 je mainloop ; if yes make another pass

 ret ; go back to where we came from

start: mov bx, data ; send start of array in bx

 mov cx, 10 ; send count of elements in cx

 call bubblesort ; call our subroutine

 mov ax, 0x4c00 ; terminate program

 int 0x21

	08-09

14

32-37
	The routine has received the count of elements in CX. Since it makes one less comparison than the number of elements it decrements it. Then it multiplies it by two since this a word array and each element takes two bytes. Left shifting has been used to multiply by two.

Base+index+offset addressing has been used. BX holds the start of array, SI the offset into it and an offset of 2 when the next element is to be read. BX can be directly changed but then a separate counter would be needed, as SI is directly compared with CX in our case.

The code starting from the start label is our main program analogous to the main in the C language. BX and CX hold our parameters for the bubblesort subroutine and the CALL is made to invoke the subroutine.

Inside the debugger we observe the same unsigned data that we are so used to now. The number 0103 is passed via BX to the subroutine which is the start of our data and the number 000A via CX which is the number of elements in our data. If we step over the CALL instruction we see our data sorted in a single step and we are at the termination instructions. The processor has jumped to the bubblesort routine, executed it to completion, and returned back from it but the process was hidden due to the step over command. If however we trace into the CALL instruction, we land at the first instruction of our routine. At the end of the routine, when the RET instruction is executed, we immediately land back to our termination instructions, to be precise the instruction following the CALL.

Also observe that with the CALL instruction SP is decremented by two from FFFE to FFFC, and the stack windows shows 0150 at its top. As the RET is executed SP is recovered and the 0150 is also removed from the stack. Match it with the address of the instruction following the CALL which is 0150 as well. The 0150 removed from the stack by the RET instruction has been loaded into the IP register thereby resuming execution from address 0150. CALL placed where to return on the stack for the RET instruction. The stack is automatically used with the CALL and RET instructions. Stack will be explained in detail later, however the idea is that the one who is departing stores the address to return at a known place. This is the place using which CALL and RET coordinate. How this placed is actually used by the CALL and RET instructions will be described after the stack is discussed.

After emphasizing reusability so much, it is time for another example which uses the same bubblesort routine on two different arrays of different sizes.

	
	Example 5.2

	01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43
	; bubble sort subroutine called twice

[org 0x0100]

 jmp start

data: dw 60, 55, 45, 50, 40, 35, 25, 30, 10, 0

data2: dw 328, 329, 898, 8923, 8293, 2345, 10, 877, 355, 98

 dw 888, 533, 2000, 1020, 30, 200, 761, 167, 90, 5

swap: db 0

bubblesort: dec cx ; last element not compared

 shl cx, 1 ; turn into byte count

mainloop: mov si, 0 ; initialize array index to zero

 mov byte [swap], 0 ; reset swap flag to no swaps

innerloop: mov ax, [bx+si] ; load number in ax

 cmp ax, [bx+si+2] ; compare with next number

 jbe noswap ; no swap if already in order

 mov dx, [bx+si+2] ; load second element in dx

 mov [bx+si], dx ; store first number in second

 mov [bx+si+2], ax ; store second number in first

 mov byte [swap], 1 ; flag that a swap has been done

noswap: add si, 2 ; advance si to next index

 cmp si, cx ; are we at last index

 jne innerloop ; if not compare next two

 cmp byte [swap], 1 ; check if a swap has been done

 je mainloop ; if yes make another pass

 ret ; go back to where we came from

start: mov bx, data ; send start of array in bx

 mov cx, 10 ; send count of elements in cx

 call bubblesort ; call our subroutine

 mov bx, data2 ; send start of array in bx

 mov cx, 20 ; send count of elements in cx

 call bubblesort ; call our subroutine again

 mov ax, 0x4c00 ; terminate program

 int 0x21

	05-07

34-40
	There are two different data arrays declared. One of 10 elements and the other of 20 elements. The second array is declared on two lines, where the second line is continuation of the first. No additional label is needed since they are situated consecutively in memory.

The other change is in the main where the bubblesort subroutine is called twice, once on the first array and once on the second.

Inside the debugger observe that stepping over the first call, the first array is sorted and stepping over the second call the second array is sorted. If however we step in SP is decremented and the stack holds 0178 which is the address of the instruction following the call. The RET consumes that 0178 and restores SP. The next CALL places 0181 on the stack and SP is again decremented. The RET consumes this number and execution resumes from the instruction at 0181. This is the coordinated function of CALL and RET using the stack.

In both of the above examples, there is a shortcoming. The subroutine to sort the elements is destroying the registers AX, CX, DX, and SI. That means that the caller of this routine has to make sure that it does not hold any important data in these registers before calling this function, because after the call has returned the registers will be containing meaningless data for the caller. With a program containing thousands of subroutines expecting the caller to remember the set of modified registers for each subroutine is unrealistic and unreasonable. Also registers are limited in number, and restricting the caller on the use of register will make the caller’s job very tough. This shortcoming will be removed using the very important system stack.

Bubble Sort

Swap

Program

